jueves, 26 de enero de 2012

Enlaces

Enlace covalente sigma
El enlace sigma (enlace σ) es el tipo más fuerte de enlace químico covalente. El enlace sigma se define más claramente para moléculas diatómicas usando el lenguaje y las herramientas de la simetría de grupos. En esta aproximación formal, un enlace σ es simétrico con respecto a la rotación alrededor del eje del enlace. Por esta definición, las formas comunes de enlace σ son s+s, pz+pz, s+pz, y dz2+dz2 (donde z está definido como el eje del enlace). La teoría cuántica también indica que los orbitales moleculares de simetría idéntica realmente se mezclan. Una consecuencia práctica de esta mezcla de moléculas diatómicas (equivalente a la hibridación de la Teoría del enlace de valencia), es que lasfunciones de onda de los orbitales moleculares s+s y pz+pz están mezclados. El alcance de esta mezcla de orbitales depende de las energías relativas de los orbitales moleculares de similar simetría.

Enlaces pi

Los enlaces pi (enlaces π) son enlaces químicos covalentesdonde dos lóbulos de un orbital electrónico se trasladan pero lo obstruyen con dos lóbulos del otro orbital electrónico involucrado. Sólo uno de losplanos nodales de los orbitales pasa a través de los núcleos involucrados.
Dos orbitales p formando un orbital π.
La letra griega π en su nombre se refiere a los orbitales p, dado que la simetría de los orbitales de los enlaces pi es la misma de la de los orbitales p. Generalmente, los orbitales p están involucrados en este tipo de enlace. Se asume que losorbitales d también participan en el enlace pi, pero esto no es necesariamente el caso en la realidad, aunque el concepto de enlace por medio de orbitales d explica bien la hipervalencia.

Estado basal, estado excitado e hibridación
El estado base de un atomo es el estado de menor energia en el cual puede estar sus electrones , donde su posicion media esta lo mas cercana posible al nucleo,existe un solo estado base e infinidad de estados excitados,
El paso del estado excitado al base se puede dar de forma inducida o espontanea mediante la emision o absorcion de fotones.
Hibridación

Se habla de hibridación cuando en un átomo se mezclan varios orbitales atómicos para formar nuevos orbitales híbridos. Los orbitales híbridos explican la forma en que se disponen los electrones en la formación de los enlaces, dentro de la teoría del enlace de valencia, y justifican la geometría las moléculas.

Hibridación sp³


Cuatro orbitales sp³.
El átomo de carbono tiene seis electrones: dos se ubican en el orbital 1s (1s²), dos en el 2s (2s²) y los restantes dos en el orbital 2p (2p²). Debido a su orientación en el plano tridimensional el orbital 2p tiene capacidad para ubicar 6 electrones: 2 en el eje de las x, dos en el eje de las y y dos electrones en el eje de las z. Los dos últimos electrones del carbono se ubicarían uno en el 2px, el otro en el 2py y el orbital 2pzpermanece vacío (2px¹ 2py¹). El esquema de lo anterior es (cada flecha un electrón):
C\quad
  \frac{\uparrow\downarrow}{1s}\;
  \frac{\uparrow\downarrow}{2s}\;
  \frac{\uparrow\,}{2p_x}\;
  \frac{\uparrow\,}{2p_y}\;
  \frac{\,\,}{2p_z}
Para satisfacer su estado energético inestable, un átomo de valencia como el del carbono, con orbitales parcialmente llenos (2px y 2py necesitarían tener dos electrones) tiende a formar enlaces con otros átomos que tengan electrones disponibles. Para ello, no basta simplemente colocar un electrón en cada orbital necesitado. En la naturaleza, éste tipo de átomos redistribuyen sus electrones formando orbitales híbridos. En el caso del carbono, uno de los electrones del orbital 2s es extraido y se ubica en el orbital 2pz. Así, los cuatro últimos orbitales tienen un electrón cada uno:


C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{2s}\;
\frac{\uparrow\,}{2p_x}
\frac{\uparrow\,}{2p_y}
\frac{\uparrow\,}{2p_z}
El estímulo para excitar al electrón del 2s al 2pz es aportado por el primer electrón en formar enlace con un átomo con este tipo de valencia. Por ejemplo, el hidrógeno en el caso del metano. Esto a su vez incrementa la necesidad de llenado de los restantes orbitales. Estos nuevos orbitales híbridos dejan de ser llamados 2s y 2p y son ahora llamados sp3 (un poco de ambos orbitales):

C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp^3}\;
\frac{\uparrow\,}{sp^3}
\frac{\uparrow\,}{sp^3}
\frac{\uparrow\,}{sp^3}
De los cuatro orbitales así formados, uno (25%) es proveniente del orbital s (el 2s) del carbono y tres (75%) provenientes de los orbitales p(2p). Sin embargo todos se sobreponen al aportar la hibridación producto del enlace. Tridimensionalmente, la distancia entre un hidrógeno y el otro en el metano son equivalentes e iguales a un ángulo de 109°.

Hibridación sp²

Se define como la combinacion de un orbital S y 2 P, para formar 3 orbitales híbridos, que se disponen en un plano formando ángulos de 120º.
Los átomos que forman hibridaciones sp2 pueden formar compuestos con enlaces dobles. Forman un ángulo de 120º y su molécula es de forma plana. A los enlaces simples se les conoce como enlaces sigma (σ) y los enlaces dobles están compuestos por un enlace sigma y un enlace pi (π). Las reglas de ubicación de los electrones en estos casos, como el alqueno etileno obligan a una hibridación distinta llamada sp2, en la cual un electrón del orbital 2s se mezcla sólo con dos de los orbitales 2p: surge a partir o al unirse el orbital s con dos orbitales p; por consiguiente, se producen tres nuevos orbitales sp2, cada orbital nuevo produce enlaces covalentes

C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp^2}\;
\frac{\uparrow\,}{sp^2}
\frac{\uparrow\,}{sp^2}
\frac{\uparrow\,}{p}
Tridimensionalmente, la distancia entre un hidrógeno y otro en algún carbono del etileno son equivalentes e iguales a un ángulo de 120°.

Hibridación sp

Se define como la combinacion de un orbital S y un P, para formar 2 orbitales híbridos, con orientacion lineal. Este es el tipo de enlace híbrido, con un ángulo de 180º y que se encuentra existente en compuestos con triples enlaces como los alquinos (por ejemplo el acetileno):

C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp}\;
\frac{\uparrow\,}{sp}
\frac{\uparrow\,}{p}
\frac{\uparrow\,}{p}

se caracteriza por la presencia de 2 orbitales pi(π).

domingo, 22 de enero de 2012

NUMEROS CUANTICOS

La propuesta de Schrodinger , considerado como el 5° modelo atómico , radica en describir las características de todos los electrones de un átomo , y para ello uso lo que conocemos como números cuánticos .
Los números cuánticos se denominan con las letras n, m, l y s y nos indican la posición y la energía del electrón. Ningún electrón de un mismo átomo puede tener los mismos números cuánticos.
El significado de los números cuánticos es :
n = número cuántico principal, que indica el nivel de energía donde se encuentra el electrón, asume valores enteros positivos, del 1 al 7 .
l = número cuántico secundario, que indica el orbital en el que se encuentra el electrón , puede ser s , p , d y f (0 , 1 , 2 y 3 ).
m = número cuántico magnético , representa la orientación de los orbitales en el espacio, o el tipo de orbital , dentro de un orbital especifico. Asume valores del número cuántico secundario negativo (-l) pasando por cero, hasta el número cuántico positivo (+l) .
s = número cuántico de spin, que describe la orientación del giro del electrón. Este número tiene en cuenta la rotación del electrón alrededor de su propio eje a medida que se mueve rodeando al núcleo. Asume únicamente dos valores +1/2 y -
En resumen los números cuanticos se expresan :
n : Nivel de energía (1, 2, 3, 4, 5, 6, 7)
l : Orbital (s=0, p=1, d=2 y f=3) de l =0 (orbital s) hasta n - 1.
m : magnético (m=-l ,0 +1) desde -l, pasando por cero,hasta +l.
s : spin (-1 , + 1 ).
Los números cuánticos sirven a su vez para entender la información que aporta la configuración electrónica
De esta forma se pueden obtener los números cuánticos de los electrones de los niveles superiores. Para mayor facilidad se presentará una tabla para asignar los números cuánticos correctos, conociendo la configuración electrónica y la localización exacta del electrón.
1s2/2s22p6/3s23p6/4s23d104p6/5s24d105p6/6s24f145d106p6/7s25f146d107p6
El número que precede al orbital es igual al número cuántico principal,por ejemplo para los electrones que están en el orbital 4p, el nivel = 4.
El número cuántico secundario se establece observando el orbital referido, por ejemplo para el orbital 4p , el subnivel es el orbital , l = 1 (p)






Orbital

Equivalencia

s

0

p

1

d

2

f

3


El existen tres tipos de orbitales p (px , py y pz ) por lo que se dice que hay tres espacios donde se acomodan dos electrones en cada uno, esos espacios o tipos de orbitales reciben el número cuántico magnético de -1 , 0 y +1 . Es decir para el orbital p existen 3 números cuánticos magnéticos.



Orbital

Tipos de orbitales

Números cuánticos m

Numero de electrones

s

1

0

2

p

3

-1 , 0 , +1

6

d

5

-2 , -1 , 0 , +1 ,+2

10

f

7

-3 , -2 , -1 , 0 , +1 , +2 , +3

14



Si nos referimos al cuarto nivel de energía, 4s23d104p6? , y se menciona al orbital 4p, el superíndice indica el total de electrones de ese orbital, si se sabe que el orbital p siempre tiene los números cuánticos m ( -1 , 0 , +1 ) , entonces se agrupan de dos en dos , es decir 2 electrones para cada número cuántico magnético. De tal manera que dos electrones (los apareados) diferirán únicamente del número cuántico s o de spin , ya que uno tendrá s = - 1/2 y el otro s = + 1/2 .
ROSAURA DE LA ROSA ANTONIO

sábado, 21 de enero de 2012

Electrón diferencial


"Se llama electrón diferencial, al electrón que se añade al pasar de un elemento al siguiente. Dicho de otra forma, al ultimo e- de un átomo."

Es decir, al pasar de un átomo a otro en la tabla periódica aumenta en 1 el numero Z (atómico) lo que implica un aumento de 1 en el numero de protones.

Como el protón es una carga positiva, esto implica un aumento en una cargapositiva y como el átomo es eléctricamente neutro (a menos que sea un ion) entonces tiene que agregarse un electrón negativo.

Es decir que el electrón diferencial es el electrón mas alejado o el ultimo electrónque se "agrega" al átomo.

Configuración Vectorial

Configuración vectorial



La configuración electrónica del átomo de un elemento corresponde a la ubicación de los electrones en los orbitales de los diferentes niveles de energía. Aunque el modelo de Scrödinger es exacto sólo para el átomo de hidrógeno, para otros átomos es aplicable el mismo modelo mediante aproximaciones muy buenas.
La manera de mostrar cómo se distribuyen los electrones en un átomo, es a través de la configuración electrónica. El orden en el que se van llenando los niveles de energía es: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p. El esquema de llenado de los orbitales atómicos, lo podemos tener utilizando la regla de la diagonal, para ello debes seguir atentamente la flecha del esquema comenzando en 1s; siguiendo la flecha podrás ir completando los orbitales con los electrones en forma correcta.

Escribiendo configuraciones electrónicas
Para escribir la configuración electrónica de un átomo es necesario:
  • Saber el número de electrones que el átomo tiene; basta conocer el número atómico (Z) del átomo en la tabla periódica. Recuerda que el número de electrones en un átomo neutro es igual al número atómico (Z = p+).
  • Ubicar los electrones en cada uno de los niveles de energía, comenzando desde el nivel más cercano al núcleo (n = 1).
  • Respetar la capacidad máxima de cada subnivel (s = 2e-, p = 6e-, d = 10e- y f = 14e-).
Ejemplo:
Los orbitales se llenan en orden creciente de energía, con no más de dos electrones por orbital, según el principio de construcción de Aufbau.
Litio (Z = 3). Este elemento tiene 3 electrones. Empezaremos llenando el orbital de menor energía con dos electrones que tendrán distinto spin (ms). El electrón restante ocupará el orbital 2s, que es el siguiente con menor energía:
La flecha indica el valor del cuarto número cuántico, el de spin: para +1/2: ­ y para –1/2, respectivamente.
También podemos describir la distribución de electrones en el átomo de litio como:



enlaces


Enlace iónico

Este enlace se produce cuando átomos de elementos metálicos (especialmente los situados más a la izquierda en la tabla periódica -períodos 1, 2 y 3) se encuentran con átomos no metálicos (los elementos situados a la derecha en la tabla periódica -especialmente los períodos 16 y 17).
En este caso los átomos del metal ceden electrones a los átomos del no metal, transformándose en iones positivos y negativos, respectivamente. Al formarse iones de carga opuesta éstos se atraen por fuerzas eléctricas intensas, quedando fuertemente unidos y dando lugar a un compuesto iónico. Estas fuerzas eléctricas las llamamos enlaces iónicos.
Ejemplo: La sal común se forma cuando los átomos del gas cloro se ponen en contacto con los átomos del metal sodio. En la siguiente simulación interactiva están representados los átomos de sodio y cloro con solo sus capas externas de electrones. En el link que aparece abajo se puede ver el modelo interactivo.


Regla del octeto

La regla del octeto dice que la tendencia de los átomos de los elementos del sistema periódico, es completar sus últimos niveles de energía con una cantidad de 8 electrones tal que adquiere una configuración semejante a la de un gas noble, ubicados al extremo derecho de la tabla periódica y son inertes, o sea que es muy difícil que reaccionen con algún otro elemento pese a que son elementos electroquímicamente estables, ya que cumplen con la ley de Lewis, o regla del octeto. Esta regla es aplicable para la creación de enlaces entre los átomos.
Una de las limitaciones de la regla del octetoes que es contradictoria a la misma, los átomos de los elementos que se encuentran después del segundo periodo de la tabla periódica, pueden acomodar más de ocho electrones en su capa externa. Ejemplos de esto son los compuestos P Cl 5 y SF6.
Algunas moléculas o iones sumamente reactivos tienen átomos con menos de ocho electrones en su capa externa. Un ejemplo es el trifluoruro de boro (BF3). En la molécula de BF3 el átomo de boro central sólo tiene seis electrones a su alrededor
Antes de que se puedan escribir algunas estructuras de Lewis, se debe conocer la forma en que los átomos están unidos entre sí. Considérese por ejemplo el ácido nítrico. Aunque la fórmula del ácido nítrico con frecuencia se representa como HNO3, en realidad el hidrógeno está unido a un oxígeno, no al nitrógeno. La estructura es HONO2 y no HNO3.

Estructura de Lewis

La estructura de Lewis de un elemento se escribe conociendo los electrones de valencia, por ejemplo el sodio (1 electrón ) , el Bario (2 electrones) , el hidrógeno (1 electrón) y el Aluminio (3 electrones).  Algunos metales como el Na y el hidrógeno, tienen una sóla estructura de Lewis. Mientras que los metales que tienen más de un electrón pueden tener varias estructuras de Lewis.
La representación de Lewis de los metales anteriores dependerá del no-metal con el que sé esta combinando, por ejemplo el Ba tiene una estructura de Lewis al combinarse con el cloro y otra diferente cuando se encuentra con el azufre.
Algo similar ocurre con los no metales que tienen menos de 7 electrones, tal es el caso del azufre que presenta diferentes estructuras cuando se encuentra con el sodio o con el bario.
La formación de un compuesto (La estructura de Lewis de un compuesto) se forma considerando las siguientes características:
1.Un átomo se une a otro por uno de los lados de la estructura (debe haber dos electrones compartidos entre los átomos unidos), ya sea que cada átomo aporte un electrón " enlace covalente simple" o que uno de los átomos aporte los dos electrones "enlace covalente coordinado" .
2.Se ocuparan tantos átomos como sean necesarios para aparear todos los electrones, no puede haber ningún electrón libre. En caso de ser metal debe de enlazar todos sus electrones y el no-metal debe de completar el octeto (los ocho electrones).
3.La formación de la estructura de la molécula equivale a embonar los átomos individuales , sin dejar electrones libres.
La estructura de Lewis de las molécula explica la formula molecular, donde las valencias se compensan considerando las cargas y para ello se usan subíndices, que indican el número de átomos de cada especie que forman la molécula.
Para los ejemplos anteriores de las estructuras de Lewis de los compuestos,se tienen las siguientes fórmulas moléculares  : NaCl , BaCl2 , H2O , Na2S , BaS y AlF3 .

Enlace covalente
Los enlaces covalentes son las fuerzas que mantienen unidos entre sí los átomos no metálicos (los elementos situados a la derecha en la tabla periódica -C, O, F, Cl, ...).
Estos átomos tienen muchos electrones en su nivel más externo (electrones de valencia) y tienen tendencia a ganar electrones más que a cederlos, para adquirir la estabilidad de la estructura electrónica de gas noble. Por tanto, los átomos no metálicos no pueden cederse electrones entre sí para formar iones de signo opuesto.
En este caso el enlace se forma al compartir un par de electrones entre los dos átomos, uno procedente de cada átomo. El par de electrones compartido es común a los dos átomos y los mantiene unidos, de manera que ambos adquieren la estructura electrónica de gas noble. Se forman así habitualmente moléculas: pequeños grupos de átomos unidos entre sí por enlaces covalentes.
Ejemplo: El gas cloro está formado por moléculas, Cl2, en las que dos átomos de cloro se hallan unidos por un enlace covalente. En la siguiente simulación interactiva están representados 2 átomos de cloro con solo sus capas externas de electrones.

domingo, 15 de enero de 2012

Teoría atómica

Griegos



<<Tradicionalmente se afirma que el fundador de la escuela atomista fue el filósofo Leucipo. Sabemos muy poco de su vida, tan poco que se ha llegado a afirmar que quizá nunca existió. Sea como fuere, quien verdaderamente dio cuerpo a la teoría atomista fue Demócrito. ¿Cómo surgió la teoría?
En tiempos de Demócrito, allá por el siglo V a.C., las distintas escuelas filosóficas se encontraban divididas básicamente en dos: la que consideraba que todo está en permanente cambio y que, por tanto, nada permanece constante; y la que afirmaba que la realidad en su conjunto es estática y que, aunque pueda parecer lo contrario, en el fondo nada cambia nunca. Heráclito se llamó el filósofo que defendió la primera teoría y Parménides quien defendió la opuesta. La teoría de Parménides nos recuerda a ese principio fundamental de la física que dice que "la materia no se crea ni se destruye, sólo se transforma", es decir, que en el fondo la realidad siempre es la misma. >>


Dalton

Las leyes ponderales de las combinaciones químicas encontraron una explicación satisfactoria en lateoría atómica formulada por DALTON en 1803 y publicada en 1808. Dalton reinterpreta las leyes ponderales  basándose en el concepto de átomo. Establece los siguientes postulados o hipótesis,partiendo de la idea de que la materia es discontinua:
Los elementos están constituidos por átomos consistentes en partículas materiales separadas e indestructibles;
Los átomos de un mismo elemento son iguales en masa y en todas las demás cualidades.
 Los átomos de los distintos elementos tienen diferentes masa y propiedades
Los compuestos se forman por la unión de átomos de los correspondientes elementos en una relación numérica sencilla. Los «átomos» de un determinado compuesto son a su vez idénticos en masa y en todas sus otras propiedades.

Aunque el químico irlandés HIGGINS, en 1789, había sido el primero en aplicar la hipótesis atómica a las reacciones químicas, es Dalton quien le comunica una base más sólida al asociar a los átomos la ideade masa.
Los átomos de DALTON difieren de los átomos imaginados por los filósofos griegos, los cuales los suponían formados por la misma materia primordial aunque difiriendo en forma y tamaño. La hipótesis atómica de los antiguos era una doctrina filosófica aceptada en sus especulaciones científicas por hombres como GALILEO, BOYLE, NEWTON, etc., pero no fue hasta DALTON en que constituye una verdadera teoría científica mediante la cual podían explicarse y coordinarse cuantitativamente los fenómenos observados y las leyes de las combinaciones químicas.



Niels Bohr

Bohr unió la idea de átomo nuclear de Rutherford con las ideas de una nueva rama de la Ciencia: la Física Cuántica. Así, en 1913 formuló una hipótesis sobre la estructura atómica en la que estableció tres postulados:
¤ El electrón no puede girar en cualquier órbita, sino sólo en un cierto número de órbitas estables. En el modelo de Rutherford se aceptaba un número infinito de órbitas.
¤ Cuando el electrón gira en estas órbitas no emite energía.
¤ Cuando un átomo estable sufre una interacción, como puede ser el imapacto de un electrón o el choque con otro átomo, uno de sus electrones puede pasar a otra órbita estable o ser arrancado del átomo.
El átomo de hidrógeno según el modelo atómico de Bohr
¤ El átomo de hidrógeno tiene un núcleo con un protón.
¤ El átomo de hidrógeno tiene un electrón que está girando en la primera órbita alrededor del núcleo. Esta órbita es la de menor energía.
¤ Si se le comunica energía a este electrón, saltará desde la primera órbita a otra de mayor energía. cuando regrese a la primera órbita emitirá energía en forma de radiación luminosa.
En la siguiente simulación puedes elegir la órbita de giro del electrón. Observa cómo las energías de las órbitas más exteriores son mayores que las de las órbitas más interiores. "r" es el radio de la órbita.

Arnod Sommerfeld

El modelo de Bohr funcionaba muy bien para el atomo de hidrgeno. En los espectros realizados para otros atomos se observaba que electrones de un mismo nivel energetico tenian distinta energia. Algo andaba mal. La conclusion fue que dentro de un mismo nivel energetico existan subniveles.
En 1916, Arnold Sommerfeld modifica el modelo atómico de Bohr, en el cual los electrones solo giraban en orbitas circulares, al decir que tambien podian girar en orbitas elipticas.
Todavia Chadwick no habia descubierto los neutrones, por eso en el nucleo solo se representan, en rojo, los protones.
Este conocimiento dio lugar a un nuevo numero cuantico: “el numero cuantico azimutal”, que determina la forma de los orbitales, se lo representa con la letra “ l “ y toma valores que van desde 0 hasta n-1.
Valor Subnivel “ l “ Nombre
0 s sharp
1 p principal
2 d diffuse
3 f fundamental
Sommerfeld perfecciono el modelo at¨®mico de Bohr intentando paliar los dos principales defectos de este.
Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postula que el nucleo del atomo no permanece inmovil, sino que tanto el nucleo como el electron se mueven alrededor del centro de masas del sistema, que estara situado muy proximo al nucleo.


Joseph John Thompson

El modelo atómico de Thomson, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón en 1897, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un puding de pasas. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga negativa se postulaba con una nube de carga positiva.
Dicho modelo fue rebatido tras el experimento de Rutherford, cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.


Ernest Rutherford


Para Ernest Rutherford, el átomo era un sistema planetario de electrones girando alrededor de un núcleo atómico pesado y con carga eléctrica positiva.
El módelo atómico de Rutherford puede resumirse de la siguiente manera:
Rutherford no solo dio una idea de cómo estaba organizado un átomo, sino que también calculó cuidadosamente su tamaño (un diámetro del orden de 10-10 m) y el de su núcleo (un diámetro del orden de 10-14m). El hecho de que el núcleo tenga un diámetro unas diez mil veces menor que el átomo supone una gran cantidad de espacio vacío en la organización atómica de la materia.
Para analizar cual era la estructura del átomo, Rutherford diseñó un experimento:
El experimento consistía en bombardear una fina lámina de oro con partículas alfa (núcleos de helio). De ser correcto el modelo atómico de Thomson, el haz de partículas debería atravesar la lámina sin sufrir desviaciones significativas a su trayectoria. Rutherford observó que un alto porcentaje de partículas atravesaban la lámina sin sufrir una desviación apreciable, pero un cierto número de ellas era desviado significativamente, a veces bajo ángulos de difusión mayores de 90 grados. Tales desviaciones no podrían ocurrir si el modelo de Thomson fuese correcto.


La suma de las cargas eléctricas negativas de los electrones debe ser igual a la carga positiva del núcleo, ya que el átomo es eléctricamente neutro.
Los electrones giran a grandes distancias alrededor del núcleo en órbitas circulares.
El átomo posee un núcleo central pequeño, con carga eléctrica positiva, que contiene casi toda la masa del átomo.